Accommodating Covariates in ROC Analysis.

نویسندگان

  • Holly Janes
  • Gary Longton
  • Margaret Pepe
چکیده

Classification accuracy is the ability of a marker or diagnostic test to discriminate between two groups of individuals, cases and controls, and is commonly summarized using the receiver operating characteristic (ROC) curve. In studies of classification accuracy, there are often covariates that should be incorporated into the ROC analysis. We describe three different ways of using covariate information. For factors that affect marker observations among controls, we present a method for covariate adjustment. For factors that affect discrimination (i.e. the ROC curve), we describe methods for modelling the ROC curve as a function of covariates. Finally, for factors that contribute to discrimination, we propose combining the marker and covariate information, and ask how much discriminatory accuracy improves with the addition of the marker to the covariates (incremental value). These methods follow naturally when representing the ROC curve as a summary of the distribution of case marker observations, standardized with respect to the control distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Semiparametric Approach for the Covariate Specific Roc Curve with Survival Outcome

Abstract: The receiver operating characteristic (ROC) curve has been extended to survival data recently, including the nonparametric approach by Heagerty, Lumley and Pepe (2000) and the semiparametric approach by Heagerty and Zheng (2005) using standard survival analysis techniques based on two different time-dependent ROC curve definitions. However, both approaches do not involve covariates ot...

متن کامل

Prediction of mental disorders after Mild Traumatic Brain Injury: principle component Approach

Introduction: In Processes Modeling, when there is relatively a high correlation between covariates, multicollinearity is created, and it leads to reduction in model's efficiency. In this study, by using principle component analysis, modification of the effect of multicolinearity in Artificial Neural Network (ANN) and Logistic Regression (LR) has been studied. Also, the effect of multicolineari...

متن کامل

Proper Use of ROC Curves in Intrusion/Anomaly Detection

ROC curves (receiver operating characteristic curves) are commonly used to portray the performance of detectors in signal-detection tasks, such as intrusion detection. This report introduces the origins of signal-detection-theory, and the underpinnings of ROC curves. It provides examples of how to construct these curves, as well as how to measure, interpret and compare them. Information about a...

متن کامل

Semiparametric estimation of the covariate-specific ROC curve in presence of ignorable verification bias.

Covariate-specific receiver operating characteristic (ROC) curves are often used to evaluate the classification accuracy of a medical diagnostic test or a biomarker, when the accuracy of the test is associated with certain covariates. In many large-scale screening tests, the gold standard is subject to missingness due to high cost or harmfulness to the patient. In this article, we propose a sem...

متن کامل

Estimation and Comparison of Receiver Operating Characteristic Curves.

The receiver operating characteristic (ROC) curve displays the capacity of a marker or diagnostic test to discriminate between two groups of subjects, cases versus controls. We present a comprehensive suite of Stata commands for performing ROC analysis. Non-parametric, semiparametric and parametric estimators are calculated. Comparisons between curves are based on the area or partial area under...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Stata journal

دوره 9 1  شماره 

صفحات  -

تاریخ انتشار 2009